$n$-cocoherent rings‎, ‎$n$-cosemihereditary rings and $n$-v-rings

نویسندگان

z. ‎zhu

department of mathematics,jiaxing university,jiaxing,zhejiang province,china,314001

چکیده

let $r$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎a right $r$-module $m$ is called $(n‎, ‎d)$-projective if $ext^{d+1}_r(m‎, ‎a)=0$ for every $n$-copresented right $r$-module $a$‎. ‎$r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $r$-module is $(n‎, ‎d)$-projective‎. ‎$r$ is called right‎ ‎$n$-cosemihereditary if every submodule of a projective right $r$-module is‎ ‎$(n‎, ‎0)$-projective‎, ‎it is called a right‎ ‎$n$-v-ring if it is a right co-$(n,0)$-ring‎. ‎some properties of $(n‎, ‎d)$-projective modules and $(n‎, ‎d)$-projective dimensions of modules over $n$-cocoherent rings are studied‎. ‎certain characterizations of $n$-copresented modules‎, ‎$(n‎, ‎0)$-projective modules‎, ‎right $n$-cocoherent rings‎, ‎right $n$-cosemihereditary rings‎, ‎as well as right $n$-v-rings are given respectively‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$n$-cocoherent rings‎, ‎$n$-cosemihereditary rings and $n$-V-rings

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

متن کامل

On n-coherent rings, n-hereditary rings and n-regular rings

We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

متن کامل

on n-coherent rings, n-hereditary rings and n-regular rings

we observe some new characterizations of $n$-presented modules. using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

متن کامل

(n,m)-SG RINGS

This paper is a continuation of the paper Int. Electron. J. Algebra 6 (2009), 219–227. Namely, we introduce and study a doubly filtered set of classes of rings of finite Gorenstein global dimension, which are called (n,m)-SG for integers n ≥ 1 and m ≥ 0. Examples of (n,m)-SG rings, for n = 1 and 2 and every m ≥ 0, are given.

متن کامل

. R A ] 2 2 N ov 2 00 4 BRANCH RINGS , THINNED RINGS , TREE ENVELOPING RINGS

We develop the theory of “branch algebras”, which are infinitedimensional associative algebras that are isomorphic, up to taking subrings of finite codimension, to a matrix ring over themselves. The main examples come from groups acting on trees. In particular, for every field k we construct a k-algebra K which • is finitely generated and infinite-dimensional, but has only finite-dimensional qu...

متن کامل

On n-flat modules and n-Von Neumann regular rings

We show that each R-module is n-flat (resp., weakly n-flat) if and only if R is an (n,n− 1)-ring (resp., a weakly (n,n− 1)-ring). We also give a new characterization of n-von Neumann regular rings and a characterization of weak n-von Neumann regular rings for (CH)-rings and for local rings. Finally, we show that in a class of principal rings and a class of local Gaussian rings, a weak n-von Neu...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۴۰، شماره ۴، صفحات ۸۰۹-۸۲۲

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023